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Scales and relevance to model development

Individual-based models — sequence of
complexity

Food web models
Coupling of human-natural system models

Indicate important and exciting directions and
opportunities for marine ecosystem modeling
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e View that marine ecosystems operate along a
continuum defined by space and time has
underpinned much of model development

* View has evolved to one in which marine ecosystem
variability and population recruitment result from the
integration of processes across all space and time
scales and includes direct as well as indirect

interactions



Time scales

Individual
movement

Processes at smaller scales
are parameterized

Processes at larger scales
are boundary conditions
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Horizontal spatial scales

Studies of marine
ecosystems require
Integration of the
environmental drivers
and biological responses
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Scales of spatial variation

Scale of aggregation depends
on view of system

Each scale requires a
different model and/or approach



Structure modifies the operation of the ecosystem
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Scale of aggregations - exploited by different predators

Krill are important to different parts of the food web because of a spatial
structure that covers many scales
Longevity and overwinter survival allows spatial and temporal transfer
Makes energy available to predators



Antarctic Food Web

Displaces production

Advection

Disconnects
Production - Mortality
Production - Export
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|

i "‘1--155 e J 1A '——'

--l—"'“--l-ﬁ'} e f LT} — N —-—
L .;ea_-.-] 1 i ?

Clliares Flagellates Bactoria Phytoplankzon

CiHares Flageflaces Bacreria Prytoplankzon




N
(@)
0
(D
W

e Models pick out key

scales and follow
these through system

Multiple optima in
ecosystems and have
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interactions that
produce these
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Fisheries
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Mixing of nutrients
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Upwelling
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Trophic level

A Physical Ocean deYoung et al. (2004)
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Modeling Approach

Target species
Trophic Level
Population

Top Down vs. Bottom up

Chem:stry

Functional Complexity

Top down and bottom up
controls operate
simultaneously but
relative effect of each is
variable

Scale of population processes

>

Zooplankton life-cycle
models

Plankton -biogeochemical models

-

Organism size/ trophic level
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Model .g Approaches
e Species
— Lagrangian models, individual-based models
(IBMs)

— Track individual particle in circulation field

 Food web models
— combine species and population
— evaluate top down versus bottom up control
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e Grimm (1999, Ecol. Mod.) suggested two reasons to use IBMs

> “study problems that cannot be addressed with state variables”
(pragmatic)

» “study is driven by suspicion that much of what we have learned
from state variable models about theoretical issues...e.qg., reqgulation
etc., would have to be revised if the discreteness, uniqueness, life
cycles and variability of the individuals were to be taken into
account” (paradigmatic)

e Most marine applications fall into the pragmatic category
because marine organisms experience unique trajectories
during their planktonic drift stages and after they develop full
swimming capabilities



Development of ¢ nceptual frameworks for
t i

recruitment that encompass multiple sce
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OCEAN CLIMATE
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Comi;g- - Copepods Light conditions
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Knowledge of interactions have resulted in
additional hypotheses about physical-biological
controls on recruitment




Larval Behavior
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Organism with pelagic life phase — oyster
Larva grows, migrates, transport by currents
Recruitment, exchange between reefs




IBM — Passive Particle

Atmosphere Circulation Model

Tides (3D and time)
River Discharge

Provides estimates of

transport pathways
exchange
residence time
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IBM — Growth and Behavior

Atmosphere Circulation Model
Tides

River Discharge (3D and time)
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Provide estimates of

4

survival
growth trajectory Post-
behavior effects Vertical Velocity, Size, settlement

recruitment Temperature, Salinity Population
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ol Population Connectivity
Matrix
i Allows determining connection
between spawning and
- < settlement areas
. " Dutewars St
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Regions

Genetic
Exchange?

Narvaez et al. (2012)
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Individual Genetics:
*Based on parental genotype
*Offspring created by meiosis

Larvae can:
*Experience mortality

Larva p»” |
*Remain within source population
exchanges _
anetic *Disperse
& . « circulation, larval growth, behavior
material

Recruits will:

*Grow

*Experience mortality or fishing
Adult provides larva and *Change sex
genetic structure *Spawn




IBM — Genetics Framework

Genetics
Model

Atmosphere Circulation Model
Tides

River Discharge (3D and time)

Provides estimates of

Gene transfer ‘ salinity w

Traits
Genotype changes

Genetics
Model

Vertical Velocity, Size,

Temperature, Salinity

Post-

Settlement
Population
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Bottom —up view of the lower food web

What is needed to support > Carnivore

. . copepod
primary production?
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Top-down view of the lower food web

“ Carnivore

copepod
“\
Omnivore “

v l/‘\ all

\/

What is needed to support
upper trophic levels?
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Couple Food Webs and Biogeochemcial Cyclin

ted system Highest Predators
1
Recycling with x z
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What i1s a Southern Ocean Food
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Antarctic Food Web
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A range of

alternative

pathways of

energy flow = — ¢
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zooplankton '

and nekton Antarctic

communities krill

are crucial in provide

maintaining efficient

food web energy

structure transfer to
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Alternative food
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Implications for

production and

maintenance of
predators

Understand the
causes for change
and key processes
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Biomass Predator group with doubled surplus/deficit

(g C m?) biomass production

(%)

1.6 Initial values in Table 1 -9

32 Initial values in Table 1

32 Cephalopods

32 Off-shelf pelagic fish

3.2 On-shelf pelagic fish

32 Benthic fish

32 All fish and cephalopods

32 All seabirds and marine mammals +33

3.2 All fish, cephalopods, seabirds and =3

maring mammals

Ballerini et al. (submitted)  Southern western Antarctic Peninsula
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Physical Drivers

Climate
Oceanography
\ Habitat Structure

J

Nutrient Cycles
Primary production
Food Webs (biodiversity)
Feeding and growth
Movement
Reproduction

f Ecological Processes \

Genetics and evolution /

/ Marine & Coastal \

industries
Recreational
Fisheries
Tourism
Agriculture
Shipping
Oil & gas

f Social & Economic \

Costs & revenue

Social networks
Markets
Behavior & Decisions
Imvestment

/

Assessments
Monitoring
Estimation

( Management

Control Rules
Regulation (1/0)
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fishery economics model




T

y-cell

25

Stock==BigSize (clam,-'mzj for yr:mon 2050:12 casel122

-=C.'-£p

PRS0 — .= =

1. :
7 ’-’e .

x-cell

14

16




300

200

100

0

0.3

Tripsi-) and Fishdays(--] Seadaysi-]) per year

g N T R A g R
#":-""J""L-’H-"-'t__,ﬂ-".ﬂq
0 10 20 30 40 a0
AvE Cagesstrip
0 10 20 30 40 a0
Cost and Revenue (M$)
0 10 20 30 40 all

A

29

20

Boat 1 in year 2030

10

kOO Goo

200

400

4u



Trips(-) and Fishdaysi(--) Seadaysi-) per year
a00 ' ' ' ' :
Gl Fewer days fishing ]
100 I
'-'.-.—l-”l.il-ln-l_"l-l-'_'i-'-l-
q : : : : :
0 10 20 a0 40 al
Ay Cages/trip
s W
1 Ty,
nst Higher yield per fishing trip
q ; ; ; ; .
0 10 20 a0 40 al
Cost and Revenue (ME)
'I T T T T T
|:| Ty T gy Ny Syt o e N i e e, Ay TR Ty
et P P e T g T
-1 y : } ; ;
0 10 20 a0 40 al

A

20

20

14

10T

Eoat 30 in year 2050

Fishing boat from
~ northern-most port

10

200 400 GO0 500



Summary Comments

Ecosystems result from interactions across
multiple scales

Comparative studies provide insights beyond
those from single system study

Target species approach allows picking out key
processes - compare with other systems

Top predators, including humans, are integral
parts of food web

Physical, biological, observational, and
observational communities focused on integrated
research programs



Summary Comments

 Need for physical, biological, observational, and
observational communities focused on integrated
research programs

* Management of natural marine resources must
include climate change and address extensive
socio-economic implications

 Development of a community that can work at
the interface between natural and human
sciences



Next challenge

Provide meaningful forecasts and projections
of marine population variability and response to
climate change and human impacts

Climate Heat Distribution/ Budgets/
(JGOFS & Biogeochemistry Elemental cycles
IMBER)

Weather Synoptic patterns/ Events/
(GLOBEC & Population dynamics | Species

IMBER)

Human-ocean-human interactions
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